

School of Interdisciplinary Engineering and Sciences (SINES)

National University of Sciences & Technology (NUST)

Course Title: Computing for Computational Science &Engineering
Course Code: CSE- 887
Credit Hours: 3-0
Pre Requisites:
Course Introduction:
The course is intended to be self-consistent, with no prior computer skills required. The course
is aimed to familiarize students with the necessary computational ideas, software, and
techniques that will serve as a foundation for students to undertake other advanced courses
in the MS Computational Science and Engineering degree program. Moreover, the knowledge
gained will be beneficial for conducting research in the various fields of computational science
and engineering. The main idea of the course is to give the student hands-on experience in
writing a simple software package that eventually can be implemented on a parallel computer
architecture. The course is divided into three modules. In the first module, students will be
introduced to the Linux working environment which is required to work on supercomputing
machines and cloud servers. In the second module, Python programming will be introduced,
which has become a leading language in the scientific computing community. In the third
module, the students will be introduced to the main parallel programming techniques and the
common software packages/libraries.

Learning Objectives:
The learning objectives of the course are:

1. Understanding the basic concepts of Linux: Students will learn about the history of
Linux, its architecture, and its role in the modern computing environment.

2. Familiarity with Linux command-line interface: Students will become familiar with
the Linux command line, including navigating the file system, manipulating files and
directories, and executing commands.

3. Knowledge of Linux system administration: Students will learn about the Linux file
system, user and group management, and process management, as well as network
configuration and basic security practices.

4. Understanding of Linux package management: Students will learn how to manage
software packages in Linux, including installing, updating, and removing software.

5. Practical experience with Linux: Students will gain practical experience using Linux
by completing hands-on exercises and assignments.

6. Knowledge of Linux scripting: Students will learn basic scripting in Linux using Bash,
and be able to automate repetitive tasks and create simple shell scripts.

7. Understanding of basic programming concepts: Students will learn about
programming concepts such as variables, data types, conditionals, loops, functions,
and basic data structures.

8. Proficiency in the Python programming language: Students will gain practical
experience in coding using Python, and will learn the syntax, libraries, and tools
associated with the language.

9. Ability to solve simple programming problems: Students will be able to write simple
programs to solve basic problems, and will gain an understanding of how to
decompose a problem into smaller, more manageable sub-problems.

10. Familiarity with software development tools: Students will become familiar with the
tools commonly used in software development, such as text editors, version control
systems, and integrated development environments.

11. Good programming practices: Students will learn about good programming
practices, such as writing clean code, testing and debugging, and documenting code.

12. Critical thinking and problem-solving skills: Students will develop critical thinking

and problem-solving skills, as programming involves breaking down a problem into
smaller parts and using logic to solve it.

13. Understanding of parallel computing concepts: Students will learn about parallel
computing, including the different types of parallelism and architectures, and the
benefits and challenges of parallel programming.

14. Practical experience in parallel programming: Students will develop skills in writing
parallel programs using Python and parallel computing libraries such as MPI and
OpenMP.

Weekly Lecture Plan
Week 1: Introduction to Linux and the Command Line

 Overview of Linux and its history
 Advantages of using Linux over other operating systems
 PuTTY and WinSCP
 Basics of the command line interface (CLI)
 Basic directory operations in Linux (pwd, ls, cd, mkdir, rmdir)
 Hands-on practice lab/Assignment
Hands-on practice lab to reinforce concepts

Week 2: Linux basic file operations
 Basic file operations in Linux (touching files, vi editor)
 Displaying files (cat, more, less, head, tails, which)
 Finding files (find command)
 Other important common file operations (cp, mv, rm, cut, paste, word count)
Hands-on practice lab to reinforce concepts

Week 3: Linux File System and Permissions
 Understanding the Linux file system
 File ownership and permissions in Linux (chmod)
 User and group management in Linux
 Special file types and permissions
 grep command
Hands-on practice lab to reinforce concepts

Week 4: Advanced Linux Concepts and Scripting
 I/O Redirections
 Pipes
 Shell scripting in Linux
 Understanding environment variables in Linux
Hands-on practice lab to reinforce concepts

Week 5: Software management in Linux
 Installing software from Compressed Archives
 tar, gzip, gunzip commands
 Configuration Script and Make File
 Compiling software
 Red Hat Package Manager (RPM) and Debian Package Manager (DEB)
Hands-on practice lab to reinforce concepts

Week 6: Introduction to Python
 Introduction to Python and its applications
 Installing Python and setting up the development environment
 Basic Python syntax, print, variables, data types
 Working with the Python shell and running Python programs
Hands-on practice lab to reinforce concepts

Week 7: Conditionals, Controls and Loops
 Conditional expressions
 Control flow statements: if, else, and elif
 Loops: for and while
Hands-on practice lab to reinforce concepts

Week 8: Lists, Sets, Tuples, Dictionaries

 Lists: creating and modifying lists, accessing elements, and slicing
 Tuples: creating and using tuples
 Dictionaries: creating and accessing dictionaries, and iterating through keys and

values
Practice exercises to reinforce concepts

Week 9: Mid-Semester Exam
Week 10: Strings and Files

 String manipulation: creating and formatting strings, and working with string methods
 File handling: opening, reading, and writing files
Practice exercises to reinforce concepts

Week 11: Functions and Exception Handling
 Functions: defining and calling functions, parameters, and return values
 Exception handling: using try and except statements
Practice exercises to reinforce concepts

Week 12: Introduction to Object-Oriented Programming in Python
 Introduction to OOP concepts: classes, objects, inheritance, polymorphism,

encapsulation
 Creating classes and objects in Python
 Instance variables and methods
 Class variables and methods
 Inheritance and polymorphism in Python
Practice exercises to reinforce concepts

Week 13: Introduction to Parallel Computing
 Introduction to parallel computing concepts: concurrency, parallelism, speedup,

efficiency, scalability, Amdahl's Law
 Parallel hardware architectures: shared memory, distributed memory, hybrid

Week 14: Parallel programming models
 Parallel programming models: shared memory, message passing, hybrid
 Introduction to parallel programming in Python: multiprocessing, multithreading

Week 15: Parallel Programming with OpenMP
 Introduction to OpenMP for shared memory parallel programming
 OpenMP programming model: threads, work sharing, synchronization, affinity
 Design and implementation of parallel algorithms using OpenMP
Practice exercises to reinforce concepts

Week 16: Parallel Programming with CUDA
 Introduction to CUDA for GPU programming
 CUDA programming model: kernels, threads, blocks, memory hierarchy
 Design and implementation of parallel algorithms using CUDA
Practice exercises to reinforce concepts

Week 17: Course Recap
Week 18: End Semester Exam
Course Learning Material:

• Lecture slides
• “Linux in easy steps” by Mike McGrath | 2021
• “The Linux Programming Interface: A Linux and UNIX System Programming” by

Michael Kerrisk | 2010
• “Python Crash Course”, by Eric Matthes | 2016
• “Learn to Code by Solving Problems”, by Daniel Zingaro | 2021
• “Hands-On GPU Programming with Python and CUDA”, by Brian Tuomanen | 2018

Grading
Nature of Examination Weightage
Assignments 5-10%
Quizzes 10-15%
Mid Semester Exam 30-40 %
End Semester Exam 40 - 50%

